Exploiting Low-Rank Structure from Latent Domains for Domain Generalization

نویسندگان

  • Zheng Xu
  • Wen Li
  • Li Niu
  • Dong Xu
چکیده

In this paper, we propose a new approach for domain generalization by exploiting the low-rank structure from multiple latent source domains. Motivated by the recent work on exemplar-SVMs, we aim to train a set of exemplar classifiers with each classifier learnt by using only one positive training sample and all negative training samples. While positive samples may come from multiple latent domains, for the positive samples within the same latent domain, their likelihoods from each exemplar classifier are expected to be similar to each other. Based on this assumption, we formulate a new optimization problem by introducing the nuclear-norm based regularizer on the likelihood matrix to the objective function of exemplar-SVMs. We further extend Domain Adaptation Machine (DAM) to learn an optimal target classifier for domain adaptation. The comprehensive experiments for object recognition and action recognition demonstrate the effectiveness of our approach for domain generalization and domain adaptation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

Image alignment via kernelized feature learning

Machine learning is an application of artificial intelligence that is able to automatically learn and improve from experience without being explicitly programmed. The primary assumption for most of the machine learning algorithms is that the training set (source domain) and the test set (target domain) follow from the same probability distribution. However, in most of the real-world application...

متن کامل

Cross-Domain Ranking via Latent Space Learning

We study the problem of cross-domain ranking, which addresses learning to rank objects from multiple interrelated domains. In many applications, we may have multiple interrelated domains, some of them with a large amount of training data and others with very little. We often wish to utilize the training data from all these related domains to help improve ranking performance. In this paper, we p...

متن کامل

Exploiting Domain Structure for Named Entity Recognition

Named Entity Recognition (NER) is a fundamental task in text mining and natural language understanding. Current approaches to NER (mostly based on supervised learning) perform well on domains similar to the training domain, but they tend to adapt poorly to slightly different domains. We present several strategies for exploiting the domain structure in the training data to learn a more robust na...

متن کامل

The Lorenz Dominance Order as a Measure of Interestingness in KDD

Ranking summaries generated from databases is useful within the context of descriptive data mining tasks where a single data set can be generalized in many different ways and to many levels of granularity. Our approach to generating summaries is based upon a data structure, associated with an attribute, called a domain generalization graph (DGG). A DGG for an attribute is a directed graph where...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014